The Process of Engraftment of Myogenic Cells in Skeletal Muscles of Primates
نویسندگان
چکیده
We studied in macaques the evolution of the intramuscular transplantation of muscle precursor cells between the time of administration and the time at which the graft is considered stable. Satellite cell-derived myoblasts labeled with ß-galactosidase were transplanted into 1 cm3 muscle regions following cell culture and transplantation protocols similar to our last clinical trials. These regions were biopsied 1 h, 1, 3, 7 d, and 3 wk later and analyzed by histology. We observed that the cell suspension leaks from the muscle bundles during injection toward the epimysium and perimysium, where most cells accumulate after transplantation. We observed evidence of necrosis, apoptosis, and mitosis in the accumulations of grafted cells, and of potential migration to participate in myofiber regeneration in the surrounding muscle bundles. After 3 wk, the compact accumulations of grafted cells left only some graft-derived myotubes and small myofibers in the perimysium. Hybrid myofibers were abundant in the muscle fascicles at 3 wk posttransplantation, and they most likely occur by grafted myoblasts that migrated from the peripheral accumulations than by the few remaining within the fascicles immediately after injection. These observations explain the findings in clinical trials of myoblast transplantation and provide information for the future research in cell therapy in myology.
منابع مشابه
WNT3A promotes myogenesis of human embryonic stem cells and enhances in vivo engraftment
The ability of human embryonic stem cells (hESCs) to differentiate into skeletal muscle cells is an important criterion in using them as a cell source to ameliorate skeletal muscle impairments. However, differentiation of hESCs into skeletal muscle cells still remains a challenge, often requiring introduction of transgenes. Here, we describe the use of WNT3A protein to promote in vitro myogenic...
متن کاملSelective Development of Myogenic Mesenchymal Cells from Human Embryonic and Induced Pluripotent Stem Cells
Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are promising sources for the cell therapy of muscle diseases and can serve as powerful experimental tools for skeletal muscle research, provided an effective method to induce skeletal muscle cells is established. However, the current methods for myogenic differentiation from human ES cells are still inefficient for clinic...
متن کاملWnt7a stimulates myogenic stem cell motility and engraftment resulting in improved muscle strength
Wnt7a/Fzd7 signaling stimulates skeletal muscle growth and repair by inducing the symmetric expansion of satellite stem cells through the planar cell polarity pathway and by activating the Akt/mTOR growth pathway in muscle fibers. Here we describe a third level of activity where Wnt7a/Fzd7 increases the polarity and directional migration of mouse satellite cells and human myogenic progenitors t...
متن کاملEngraftment potential of dermal fibroblasts following in vivo myogenic conversion in immunocompetent dystrophic skeletal muscle
Autologous dermal fibroblasts are promising candidates for enhancing muscle regeneration in Duchenne muscular dystrophy (DMD) due to their ease of isolation, immunological compatibility, and greater proliferative potential than DMD satellite cells. We previously showed that mouse fibroblasts, after MyoD-mediated myogenic reprogramming in vivo, engraft in skeletal muscle and supply dystrophin. A...
متن کاملFetal Skeletal Muscle Progenitors Have Regenerative Capacity after Intramuscular Engraftment in Dystrophin Deficient Mice
Muscle satellite cells (SCs) are stem cells that reside in skeletal muscles and contribute to regeneration upon muscle injury. SCs arise from skeletal muscle progenitors expressing transcription factors Pax3 and/or Pax7 during embryogenesis in mice. However, it is unclear whether these fetal progenitors possess regenerative ability when transplanted in adult muscle. Here we address this questio...
متن کامل